Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The nature of structural changes of nanosecond laser modification inside silicon is investigated. Raman spectroscopy and transmission electron microscopy measurements of cross sections of the modified channels reveal highly localized crystal deformation. Raman spectroscopy measurements prove the existence of amorphous silicon inside nanosecond laser induced modifications, and the percentage of amorphous silicon is calculated based on the Raman spectrum. For the first time, the high-resolution transmission electron microscopy images directly show the appearance of amorphous silicon inside nanosecond laser induced modifications, which corroborates the indirect measurements from Raman spectroscopy. The laser modified channel consists of a small amount of amorphous silicon embedded in a disturbed crystal structure accompanied by strain. This finding may explain the origin of the positive refractive index change associated with the written channels that may serve as optical waveguides.more » « less
-
A mathematical model is derived to predict the maximum speed of a focused laser beam in the laser cutting of thin materials. This model contains only two material parameters and is used to obtain an explicit relationship between the cutting speed and laser parameters. The model shows that there exists an optimal focal spot radius with which cutting speed is maximized for a given laser power. We compare the modeling results with experiments and find a good agreement after correcting laser fluence. This work is useful for the practical application of lasers in processing thin materials such as sheets and panels.more » « less
-
Panning, Eric M.; Liddle, J. Alexander (Ed.)
-
von Freymann, Georg; Blasco, Eva; Chanda, Debashis (Ed.)
-
Helical structures exhibit novel optical and mechanical properties and are commonly used in different fields such as metamaterials and microfluidics. A few methods exist for fabricating helical microstructures, but none of them has the throughput or flexibility required for patterning a large surface area with tunable pitch. In this paper, we report a method for fabricating helical structures with adjustable forms over large areas based on multiphoton polymerization (MPP) using single-exposure, three dimensionally structured, self-accelerating, axially tunable light fields. The light fields are generated as a superposition of high-order Bessel modes and have a closed-form expression relating the design of the phase mask to the rotation rate of the beam. The method is used to fabricate helices with different pitches and handedness in the material SU-8. Compared to point-by-point scanning, the method reported here can be used to reduce fabrication time by two orders of magnitude, paving the way for adopting MPP in many industrial applications.more » « less
-
Bursts of 16 femtosecond laser pulses are generated in a fourfold Michelson interferometer with a tunable delay and envelope. Solutions are given to solve the “forward problem” (bursts from a given parameter set) and “inverse problem” (obtain parameter set from a given burst). Three types of bursts are generated experimentally with envelopes suitable for applications in laser materials processing and the generation of terahertz radiation.more » « less
-
Pursuing ever-smaller feature size in laser-based lithography is a research topic of vital importance to keep this technique competitive with other micro-/nano-fabrication methods. Features smaller than the diffraction-limited spot size can be obtained by “thresholding”, which utilizes the deterministic nature of damage threshold with ultrashort laser pulses and is achieved by precisely tuning pulse energies so that only the central portion of the focal spot produces permanent modification. In this paper, we examine the formulation commonly used to describe thresholding and show that the relationship between feature size (r) and laser fluence (F) is invariant with respect to the nature of laser absorption. Verified by our experiments performed on metal, semiconductor, and dielectric samples, such invariance is used to predict the smallest feature size that can be achieved for different materials in a real-world system.more » « less
An official website of the United States government
